

The magic of magnetic shape memory...

Institute of Physics of the Czech Academy of Sciences

FZU

• Intro & macrotwins

• Movie with examples

- Microtwins
- Nanotwins
- Summary

Institute of Physics of the Czech

my of Sciences

DEPARTMENT OF MAGNETIC MEASUREMENTS AND MATERIALS

Structure as a $3\overline{2}$ stacking sequence

Ø

DEPARTMENT OF MAGNETIC MEASUREMENTS AND MATERIALS

Structure as a $3\overline{2}$ stacking sequence

Structure as a $3\overline{2}$ stacking sequence

Heczko, Oleg, et al.Acta Materialia 115 (2016): 250-258.

Straka, L., et al., Acta Materialia 132 (2017): 335-344. Straka, L., et al., Scientific Reports 8.1 (2018): 11943.

Institute of Physics of the Czech

ny of Sciences

L. STRAKA

Structure as a $3\overline{2}$ stacking sequence

Straka, L., et al., Acta Materialia 132 (2017): 335-344. Straka, L., et al., Scientific Reports 8.1 (2018): 11943.

Institute of Physics of the Czech Academy of Sciences

C711

Structure as a $3\overline{2}$ stacking sequence

Institute of Physics of the Czech Academy of Sciences

C7

a/b twins as a $3\overline{2}$ stacking sequence inversion

a/b twin boundary = stacking sequence inversion ...323232 | 232323...

Straka, L., et al., Acta Materialia 132 (2017): 335-344. Straka, L., et al., Scientific Reports 8.1 (2018): 11943.

Institute of Physics of the Czech

my of Sciences

Czech Academy

of Sciences

a/b twin boundary = stacking sequence inversion ...323232 | 232323...

a/b twin boundary = stacking sequence inversion ...323232 | 232323...

Institute of Physics of the Czech

nv of Sciences

Czech Academy of Sciences

a/b twin boundary = stacking sequence inversion ...323232 | 232323...

Institute of Physics of the Czech

ny of Sciences

DEPARTMENT OF

Yu U. Wang, Phys. Rev. B 74 (2006), 104109 Yu U. Wang, Phys. Rev. B, 76 (2007), Article 024108

a/b twin boundary = stacking sequence inversion ...323232 | 232323...

Institute of Physics of the Czech

of Sciences

a/b twin boundary = stacking sequence inversion $...3\overline{2}3\overline{2}3\overline{2}|2\overline{3}2\overline{3}2\overline{3}...$

a/b twin boundary = stacking sequence inversion ...323232 | 232323...

Institute of Physics of the Czech

a/b twin boundary = stacking sequence inversion ...323232 | 232323...

Institute of Physics of the Czech

a/b twin boundary = stacking sequence inversion ...323232 | 232323...

Institute of Physics of the Czech

Czech Academy

of Sciences

a/b twin boundary = stacking sequence inversion ...323232 | 232323...

Nanotwins - adaptive diffraction condition:

m < 2/sH

where s = 0.0045 is twinning shear and H = 4 is reciprocal space coordinate

=>

size of a/b twin

m < 20 nm (100 atomic planes)

Straka, L., et al., Acta Materialia 132 (2017): 335-344. Straka, L., et al., Scientific Reports 8.1 (2018): 11943.

Institute of Physics of the Czech

a/b **nano**twins as a $3\overline{2}$ stacking sequence inversion

Czech Academy

of Sciences

Nanotwins - adaptive diffraction condition:

m < 2/sH

where s = 0.0045 is twinning shear and H = 4 is reciprocal space coordinate

=>

size of a/b twin

m < 20 nm (100 atomic planes)

a/b **nano**twins as a $3\overline{2}$ stacking sequence inversion

Czech Academy

of Sciences

Nanotwins - adaptive diffraction condition:

m < 2/sH

where s = 0.0045 is twinning shear and H = 4 is reciprocal space coordinate

=>

size of a/b twin

m < 20 nm (100 atomic planes)

Straka, L., et al., Acta Materialia 132 (2017): 335-344. Straka, L., et al., Scientific Reports 8.1 (2018): 11943.

L. STRAKA

Modulation

Heczko, Oleg, et al.Acta Materialia 115 (2016): 250-258.

Modulation

Heczko, Oleg, et al.Acta Materialia 115 (2016): 250-258.

Modulation – study by high-resolution q-scan

Institute of Physics of the Czech

my of Sciences

Heczko, Oleg, et al.Acta Materialia 115 (2016): 250-258.

Modulation – study by high-resolution q-scan

Institute of Physics of the Czech

ny of Sciences

Straka L. et al., submitted, http://dx.doi.org/10.2139/ssrn.4771525 Heczko, Oleg, et al.Acta Materialia 115 (2016): 250-258.

TWISTR.cz

Institute of Physics of the Czech Academy of Sciences

Czech Academy of Sciences Ø

TWISTR.cz

Institute of Physics of the Czech Academy of Sciences

Czech Academy of Sciences Ø

Straka L. et al., submitted, http://dx.doi.org/10.2139/ssrn.4771525

Straka L. et al., submitted, http://dx.doi.org/10.2139/ssrn.4771525

TWISTR.cz

Straka L. et al., submitted, http://dx.doi.org/10.2139/ssrn.4771525

TWISTR.cz

10

Institute of Physics of the Czech

my of Sciences

DEPARTMENT OF

MAGNETIC MEASUREMENTS AND MATERIALS

2

Ω

3

Czech Academy of Sciences Ø

Straka L. et al., submitted, http://dx.doi.org/10.2139/ssrn.4771525

Atomic plane nr.

5

6

7

28/44

The magic of magnetic shape memory alloys and crystal structure perspective

9

10

8

Institute of Physics DEPARTMENT OF of the Czech Academy of Sciences MAGNETIC MEASUREMENTS AND MATERIALS

Czech Academy

of Sciences

Ø

29/44

TWISTR.cz

Institute of Physics of the Czech Academy of Sciences

Czech Academy of Sciences Ø

30/44

Czech Academy of Sciences Ø Institute of Physics of the Czech Academy of Sciences FZU MAGNETIC MEASUREMENTS AND MATERIALS q_c' Aperiodicity – study by high-resolution q-scan commensurate (b) (2²0) (400) **300** 260 Log. intensity (a.u.) q_{ic}' 180 incommensurate 140 100 2 2.4 2.8 3.2 3.6 4 h, k-4 (-) **q**=(q,q,0) q'=2/q

DEPARTMENT OF

Straka L. et al., submitted, http://dx.doi.org/10.2139/ssrn.4771525

The magic of magnetic shape memory alloys and crystal structure perspective

TWISTR.cz

Aperiodicity – study by high-resolution q-scan

Czech Academy of Sciences Ø

Institute of Physics of the Czech

my of Sciences

DEPARTMENT OF

MAGNETIC MEASUREMENTS AND MATERIALS

q=(q,q,0) q'=2/q

Straka L. et al., submitted, http://dx.doi.org/10.2139/ssrn.4771525

Ø

DEPARTMENT OF MAGNETIC MEASUREMENTS AND MATERIALS

Aperiodicity – study by high-resolution q-scan

Institute of Physics of the Czech

nv of Sciences

Straka L. et al., submitted, http://dx.doi.org/10.2139/ssrn.4771525

Aperiodicity – study by high-resolution q-scan

Czech Academy of Sciences Ø

Institute of Physics of the Czech Academy of Sciences DEPARTMENT OF

MAGNETIC MEASUREMENTS AND MATERIALS

Straka L. et al., in preparation

Aperiodicity results in a/b nanotwinning (!!!)

Institute of Physics of the Czech

ny of Sciences

Straka L. et al., in preparation

Aperiodicity results in a/b nanotwinning (!!!)

Institute of Physics of the Czech

v of Sciences

Straka L. et al., in preparation

Ø

DEPARTMENT OF Magnetic measurements and materials

Aperiodicity results in a/b nanotwinning (!!!)

Institute of Physics of the Czech

ny of Sciences

Straka L. et al., in preparation

TWISTR.cz

-2

(a) q = 0.400, q' = 5.00 (10M commensurate)

3

-2

3

Czech Academy

of Sciences

Ø

Institute of Physics of the Czech

Academy of Sciences

DEPARTMENT OF

MAGNETIC MEASUREMENTS AND MATERIALS

Ø

Distinct identified nanotwins/structures

Institute of Physics of the Czech

Academy of Sciences

Straka L. et al., in preparation

Distinct identified nanotwins/structures as low energy/low temperature states

Institute of Physics of the Czech DEPARTMENT OF

MAGNETIC MEASUREMENTS AND MATERIALS

Hypothesis yet to be tested: q converges to one of the nanotwinned states

Czech Academy

of Sciences

			N	q'	q	Domain size	Domain size	Marking
140-	0.430	•• - •	-	(planes)	(-)	(planes)	(nm)	-
	0.425 -	▼ ● ►	1	4.000	0.5000	4	0.8	40
	0.420 -	▲ • •	2	4.500	0.4444	9	1.9	180*
240 -	-0-415-	•••	3	4.667	0.4286	14	2.9	140
	0.415	• • •	4	4.750	0.4211	38	8.0	38O*
340 -	0.410	•··	5	4.800	0.4167	24	5.0	240
(-) b	0.405 -	•	6	4.833	0.4138	58	12.2	58O*
	0.400 -		7	4.857	0.4118	34	7.1	340
	0.400	▶ Righi 2007 ◆ Veřtát 2022 ▶ ▼ ▼	8	4.875	0.4103	78	16.4	780*
	0.395 -	Righi 2010 A Fukuda 2009	9	4.889	0.4091	44	9.2	44O
	0.390 -	Cakir 2015 Variager 2014	10	4.900	0.4082	98	20.6	98O*
	0.385 -	Veřtát 2021	11	4.909	0.4074	54	11.3	54O
	0.200		12	4.917	0.4068	118	24.8	118O*
	+ 086.0 0	50 100 150 200 250 300 350	00	5.000	0.4000	00	00	10M comm.**
	0	Temperature (K)	* Double cell size to comply with the $L2_1$ order.					
			** also marked as 5M when neglecting ordering.					

Straka L. et al., in preparation

Summary IV

Aperiodic crystal Anharmonic modulation

Wave modulation perspective vs nanotwinning perspective:

- not exclusive concepts but complementary/intertwinned concepts in Ni-Mn-Ga
- nanotwinning is a result of crystal aperiodicity
- Low temperature states are nanotwinned
- Nanotwinning ON/OFF (at r.t.)

Summary

Magnetic shape memory (Ni-Mn-Ga)

- very interesting at all scales
- magnetism important but (micro)structure critical for MSM functionality

- a great platform for

- magnetoelastic and magnetomechanical effects (up to 12% deformation in mag. field)
- martensite crystallography (deeply hierarchical martensite)
- nanotwinning and aperiodic crystal concepts (nanotwins on/of, aperiodicity on/offf)
- major **future** tasks: alternatives & applications

